451 research outputs found

    Estrategias de afrontamiento de las enfermeras de unidades de cuidados intensivos frente a la muerte de sus pacientes

    Get PDF
    Las unidades de cuidados intensivos (UCI) son las unidades más sofisticadas de los hospitales. Los pacientes ingresados en ellas presentan un estado de salud crítico y, a pesar de que el principal objetivo es restablecer la salud, la muerte es un hecho que ocurre de manera frecuente, además de ser una realidad incontestable a la que todas las personas vamos a llegar en algún momento. Por tanto, las enfermeras que trabajan en estas unidades han de enfrentarse al fallecimiento de sus pacientes, lo que desencadena en ellas diversas reacciones emocionales que, en caso de no ser manejadas de forma correcta, pueden llevar a generar ansiedad, estrés u otros sentimientos negativos. Las estrategias de afrontamiento son esfuerzos tanto cognitivos como conductuales que pueden emplear las enfermeras para manejar esta situación, y se pueden categorizar en base a diferentes criterios. La presente revisión tiene por objeto investigar la literatura existente acerca de las distintas estrategias de afrontamiento que llevan a cabo las enfermeras que trabajan en unidades de cuidados intensivos.Intensive Care Units (ICU) are the most sophisticated units in a hospital. Patients admitted in these units present a critical health condition, and although the main objective of ICUs is to restore health, death is a fact that occurs frequently, in addition to being an incontestable reality which everyone will reach at some point. Therefore, nurses who work in these units must face the death of their patients, generating various emotional reactions in them. If these reactions are not managed properly, they can lead to anxiety, stress, and other negative feelings. Coping strategies are both cognitive and behavioural efforts which nurses can use to manage this situation, and they can be categorized based on different criteria. The purpose of this review is to investigate the existing literature about the different coping strategies carried out by nurses who work in intensive care units

    Photodegradation of nimodipine and felodipine in microheterogeneous systems

    Get PDF
    IndexaciĂłn: Web of Science; ScieloThe photochemical behavior of nimodipine (NIMO) and felodipine (FELO), photolabile drugs widely used as antihypertensive calcium channel blockers, is studied in constrained media. Specifically, we are interested in the kinetic analysis of 4-aryl-1,4-dihydropyridine photodegradation processes when they are incorporated in biological-mimicking systems like micelles or liposomes. In order to establish if the nature of the head of surfactant (ionic or nonionic) could be important modulating the photo-reactivity of these drugs, we studied the photodegradation of NIMO and FELO incorporated in micelles formed with sodium dodecyl sulfate (SDS, anionic), dodecyl-pyridinium chloride (DPC, cationic) and mono lauryl sucrose ester (MLS, nonionic) as surfactants. Additionally, the results of the photodegradation of these compounds in liposomes were also included. The results clearly indicate that both dihydropyridines studied, NIMO and FELO, are located near to the interface, but the surface charge of micelles does not affect neither, the photodegradation rate constant nor the photodegradation products profile. The absence of singlet oxygen generation in micellar media is consistent with the proposition of these 4-aryl-1,4-dihidropyridines located near to the interface of the micelle, where a polar environment is sensed. In addition, the ethanol preferential location on membranes and dihydropyridine enhanced photodegradation by alcohol presence are interesting results to consider in future research.http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0717-97072012000300025&nrm=is

    Empirical Tool for the Assessment of Annual Overtopping Probabilities of Dams

    Full text link
    [EN] This paper presents a simple tool for the assessment of maximum overtopping probabilities of dams. The tool is based on empirical relations between the overtopping probability and the basic hydrological and hydraulic characteristics of the dam-reservoir system: the unit storage capacity, VF*, and the unit spillway capacity, QCap*, both weighted with the relative importance of the 1,000-year flood. The surface issued from the tool represents the limit above which no VF*-QCap* combination is statistically expected to offer a higher probability. The tool was calibrated using the detailed overtopping models of 342,233 synthetic cases generated from 30 existing dams and then validated against a set of 21 independent cases. The tool is useful when analyzing a portfolio of dams in previous screening phases of dam risk analysis. It aims at identifying overtopping as a relevant failure mode and easily classifying each dam in terms of its overtopping probability. The tool is also a support for the definition and prioritization of corrective measures since it assesses their impact in the overtopping probability reduction.Fluixá-Sanmartín, J.; Altarejos-García, L.; Morales-Torres, A.; Escuder Bueno, I. (2019). Empirical Tool for the Assessment of Annual Overtopping Probabilities of Dams. Journal of Water Resources Planning and Management. 145(1):1-12. https://doi.org/10.1061/(ASCE)WR.1943-5452.0001017S112145

    Experimental Study on the Evaluation of Necking and Fracture Strains in Sheet Metal Forming Processes

    Get PDF
    In this paper the formability of AA2024-T3 metal sheets is experimentally analyzed. For this purpose, a series of StretchBending and Incremental Sheet Forming (ISF) tests are carried out. The former tests allow determine the formability limits through the evaluation of necking and fracture using the optical deformation measurement system ARAMIS® and measuring the thickness strains along the fracture line. The latter are performed with the aim of confirming the validity of these limits. In this case, the spifability, formability in Single Point Incremental Forming (SPIF), was studied in the light of circle grid analysis by means of the 3D deformation digital measurement system ARGUS®. Different punch diameters are used in both processes. The results exhibit the importance of the accuracy in the setting of the formability limits as well as the variability that these limits present depending on the forming process or some variables such as the tool radius.Ministerio de Ciencia e Innovación DPI 2009-1333

    Psychological therapies to treat chronic pain

    Get PDF
    A pesar de que existe abundante literatura que muestra la efectividad del tratamiento cognitivo-conductual del dolor crónico, en nuestro país, se carecía de un manual del mismo. Por este motivo, diseñamos un protocolo donde se describen las diferentes técnicas de dicha terapia. En el presente artículo, realizamos una detallada descripción del mismo. Antes de adentrarnos en la terapia cognitivo-conductual, presentamos una revisión de las principales terapias psicológicas que se emplean en el tratamiento del dolor crónico.Although there is abundant literature showing the effectiveness of cognitive treatment of chronic pain, in our country, there was no manual for it. For this reason, we designed a protocol that describes the various techniques of this therapy. In this article, we conducted a detailed description. Before dealing with cognitive-behavioral therapy, we present a review of the main psychological therapies used in the treatment of chronic pain.Ministerio de Sanidad y Consumo PI05196

    Differences in maternal and neonatal cardiometabolic markers and placenta status by foetal sex. The GESTAFIT project

    Get PDF
    Aims: To explore the differences in some maternal-neonatal metabolic markers and placenta status by foetal sex. Methods: One hundred thirty-nine Caucasian pregnant women from the GESTAFIT project and their new-borns were included in the present cross-sectional study. Serum cardiometabolic markers (i.e. lipid and glycaemic profile and uric acid) were analysed at late pregnancy and at birth. In placenta, telomeres length, proportion of deleted mitochondrial-DNA and mitochondrial-DNA density, some minerals and interleukin 8, epidermal growth factor, fibroblast growth factor-2 and vascular endothelial growth factor were measured. The study was run between November 2015 and April 2018. Results: Mothers carrying a male showed higher serum triglycerides than mothers carrying a female at late pregnancy (p < .05). Serum total and low-density lipoprotein cholesterol were greater in males’ umbilical cord blood artery compared to females’ new-borns (both, p < .05). Mothers of males and male new-borns presented higher uric acid than mothers of females and female new-borns at birth (p < .05). Female’s placentas presented greater placental-newborn weight ratio, manganese content and fibroblast growth factor-2 (all, p ⩽ .05), and evidence of statistical significance in telomeres length, which were 17% longer (p = .076). Conclusion: Our findings show weak differences in some cardiometabolic and placental status markers by foetal sex. Notwithstanding, we observed a slightly more proatherogenic profile in both, mothers carrying males’ foetuses and male new-borns. We also found lower serum uric acid and better placenta status in mothers carrying a female. These findings indicate that foetal sex might need to be considered for a more personalized follow-up of pregnancies.Regional Ministry of Health, Junta de Andalucia PI-0395-2016University of GranadaJunta de AndaluciaEuropean Commission SOMM17/6107/UGRPlan Propio de Investigacion 2016, Excellence actions (Units of Excellence: Unit of Excellence in Exercise and Health

    Review article: Climate change impacts on dam safety

    Get PDF
    [EN] Dams as well as protective dikes and levees are critical infrastructures whose associated risk must be properly managed in a continuous and updated process. Usually, dam safety management has been carried out assuming stationary climatic and non-climatic conditions. However, the projected alterations due to climate change are likely to affect different factors driving dam risk. Although some reference institutions develop guidance for including climate change in their decision support strategies, related information is still vast and scattered and its application to specific analyses such as dam safety assessments remains a challenge. This article presents a comprehensive and multidisciplinary review of the impacts of climate change that could affect dam safety. The global effect can be assessed through the integration of the various projected effects acting on each aspect of the risk, from the input hydrology to the calculation of the consequences of the flood wave on population and assets at risk. This will provide useful information for dam owners and dam safety practitioners in their decisionmaking process.Fluixá Sanmartín, J.; Altarejos García, L.; Morales Torres, A.; Escuder Bueno, I. (2018). Review article: Climate change impacts on dam safety. Natural Hazards and Earth System Sciences. 18(9):2471-2488. https://doi.org/10.5194/nhess-18-2471-2018S24712488189Altarejos-García, L., Escuder-Bueno, I., Serrano-Lombillo, A., and de Membrillera-Ortuño, M.: Methodology for estimating the probability of failure by sliding in concrete gravity dams in the context of risk analysis, Struct. Saf., 36–37, 1–13, https://doi.org/10.1016/j.strusafe.2012.01.001, 2012. aANCOLD: Guidelines on Risk Assessment, Tech. rep., Australian National Committee on Large Dams, 2003. a, bAnderson, B., Rutherfurd, I., and Western, A.: An analysis of the influence of riparian vegetation on the propagation of flood waves, Environ. Model. Softw., 21, 1290–1296, https://doi.org/10.1016/j.envsoft.2005.04.027, 2006. aAndreu, J., Capilla, J., and Sanchís, E.: AQUATOOL, a generalized decision-support system for water-resources planning and operational management, J. Hydrol., 177, 269–291, https://doi.org/10.1016/0022-1694(95)02963-X, 1996. aArdiles, L., Sanz, D., Moreno, P., Jenaro, E., Fleitz, J., and Escuder-Bueno, I.: Risk Assessment and Management for 26 Dams Operated By the Duero River Authority (Spain), in: 6th International Conference on Dam Engineering, edited by: Pina, C., Portela, E., Gomes, J., Lisbon, Portugal, 15–17 February 2011. aArheimer, B. and Lindström, G.: Climate impact on floods: changes in high flows in Sweden in the past and the future (1911–2100), Hydrol. Earth Syst. Sci., 19, 771–784, https://doi.org/10.5194/hess-19-771-2015, 2015. aArnbjerg-Nielsen, K., Willems, P., Olsson, J., Beecham, S., Pathirana, A., Bülow Gregersen, I., Madsen, H., and Nguyen, V.-T.-V.: Impacts of climate change on rainfall extremes and urban drainage systems: a review, Water Sci. Technol., 68, 16–28, https://doi.org/10.2166/wst.2013.251, 2013. aAtkins: Impact of Climate Change on Dams &amp;amp; Reservoirs, Final Guidance Report FD2628, Department of Environment, Food and Rural Affairs, 2013. aAven, T.: The risk concept–historical and recent development trends, Reliab. Eng. Syst. Safe., 99, 33–44, https://doi.org/10.1016/j.ress.2011.11.006, 2012. aAyyub, B. M.: Elicitation of expert opinions for uncertainty and risks, CRC Press, Boca Raton, Florida, 2001. aBahls, V. and Holman, K.: Climate Change in Hydrologic Hazard Analyses: Friant Dam Pilot Study - Part I: Hydrometeorological Model Inputs, Tech. rep., U.S. Department of the Interior, Bureau of Reclamation, 2014. a, bBarredo, J. I.: Normalised flood losses in Europe: 1970–2006, Nat. Hazards Earth Syst. Sci., 9, 97-104, https://doi.org/10.5194/nhess-9-97-2009, 2009. aBates, B., Kundzewicz, Z., Wu, S., and Palutikof, J. (Eds.): Climate change and water, Technical Paper of the Intergovernmental Panel on Climate Change, Geneva, ipcc secretariat edn., 2008. aBladé, E., Cea, L., Corestein, G., Escolano, E., Puertas, J., Vázquez-Cendón, E., Dolz, J., and Coll, A.: Iber: herramienta de simulación numérica del flujo en ríos, Revista Internacional de Métodos Numéricos para Cálculo y Diseño en Ingeniería, 30, 1–10, https://doi.org/10.1016/j.rimni.2012.07.004, 2014. aBornschein, A. and Pohl, R.: Land use influence on flood routing and retention from the viewpoint of hydromechanics: Land use influence on flood routing and retention, J. Flood Risk Manag., 11, 6–14, https://doi.org/10.1111/jfr3.12289, 2018. aBouwer, L. M.: Have Disaster Losses Increased Due to Anthropogenic Climate Change?, B. Am. Meteorol. Soc., 92, 39–46, https://doi.org/10.1175/2010BAMS3092.1, 2011. aBouwer, L. M., Bubeck, P., and Aerts, J. C.: Changes in future flood risk due to climate and development in a Dutch polder area, Global Environ. Change, 20, 463–471, https://doi.org/10.1016/j.gloenvcha.2010.04.002, 2010. aBowles, D.: Advances in the practice and use of portfolio risk assessment, in: ANCOLD Conference on Dams, 2000. aBowles, D., Brown, A., Hughes, A., Morris, M., Sayers, P., Topple, A., Wallis, M., and Gardiner, K.: Guide to risk assessment for reservoir safety management, Volume 1: Guide, Tech. Rep. SC090001/R1, Environment Agency, Horison House, Deanery Road, Bristol, BS1 9AH, 2013a. a, bBowles, D., Brown, A., Hughes, A., Morris, M., Sayers, P., Topple, A., Wallis, M., and Gardiner, K.: Guide to risk assessment for reservoir safety management, Volume 2: Methodology and supporting information, Tech. Rep. SC090001/R2, Environment Agency, Horison House, Deanery Road, Bristol, BS1 9AH, 2013b. aBraud, I., Vich, A., Zuluaga, J., Fornero, L., and Pedrani, A.: Vegetation influence on runoff and sediment yield in the Andes region: observation and modelling, J. Hydrol., 254, 124–144, https://doi.org/10.1016/S0022-1694(01)00500-5, 2001. aBriaud, J.-L.: Case Histories in Soil and Rock Erosion: Woodrow Wilson Bridge, Brazos River Meander, Normandy Cliffs, and New Orleans Levees, J. Geotech. Geoenviron., 134, 1425–1447, https://doi.org/10.1061/(ASCE)1090-0241(2008)134:10(1425), 2008. aBritish Columbia, Water Management Branch, British Columbia, and Dam Safety Unit: Inspection &amp;amp; maintenance of dams: dam safety guidelines, British Columbia, Water Management Branch, Victoria, 1998. aCardona, O., van Aalst, M., Birkmann, J., Fordham, M., McGregor, G., Perez, R., Pulwarty, R., Schipper, E., and Sinh, B.: Determinants of risk: exposure and vulnerability, in: Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation, edited by: Field, C., Barros, V., Stocker, T., Qin, D., Dokken, D., Ebi, K., Mastrandrea, M., Mach, K., Plattner, G.-K., Allen, S., Tignor, M., and Midgley, P., A Special Report of Working Groups I and II of the Intergovernmental Panel on Climate Change (IPCC), Cambridge University Press, Cambridge, UK, New York, NY, USA, 65–108, 2012. aCarrivick, J. L.: Dam break – Outburst flood propagation and transient hydraulics: A geosciences perspective, J. Hydrol., 380, 338–355, https://doi.org/10.1016/j.jhydrol.2009.11.009, 2010. aCH2014-Impacts: Toward quantitative scenarios of climate change impacts in Switzerland, OCCR, FOEN, MeteoSwiss, C2SM, Agroscope and ProClim, Bern, Switzerland, 2014. aChaney, N. W., Herman, J. D., Reed, P. M., and Wood, E. F.: Flood and drought hydrologic monitoring: the role of model parameter uncertainty, Hydrol. Earth Syst. Sci., 19, 3239–3251, https://doi.org/10.5194/hess-19-3239-2015, 2015. aChangnon, S. A., Pielke, R. A., Changnon, D., Sylves, R. T., and Pulwarty, R.: Human Factors Explain the Increased Losses from Weather and Climate Extremes, B. Am. Meteorol. Soc., 81, 437–442, https://doi.org/10.1175/1520-0477(2000)081&amp;lt;0437:HFETIL&amp;gt;2.3.CO;2, 2000. aChernet, H. H., Alfredsen, K., and Midttømme, G. H.: Safety of Hydropower Dams in a Changing Climate, J. Hydrol. Eng., 19, 569–582, https://doi.org/10.1061/(ASCE)HE.1943-5584.0000836, 2014. a, b, cChoi, O. and Fischer, A.: The Impacts of Socioeconomic Development and Climate Change on Severe Weather Catastrophe Losses: Mid-Atlantic Region (MAR) And the U.S., Clim. Change, 58, 149–170, https://doi.org/10.1023/A:1023459216609, 2003. aCommonwealth of Australia: National Climate Resilience and Adaptation Strategy, Tech. rep., 2015. aCrompton, R. P. and McAneney, K. J.: Normalised Australian insured losses from meteorological hazards: 1967–2006, Environ. Sci. Policy, 11, 371–378, https://doi.org/10.1016/j.envsci.2008.01.005, 2008. aDamiano, E. and Mercogliano, P.: Potential Effects of Climate Change on Slope Stability in Unsaturated Pyroclastic Soils, in: Landslide Science and Practice, edited by: Margottini, C., Canuti, P., and Sassa, K., Springer Berlin Heidelberg, Berlin, Heidelberg, 15–25, https://doi.org/10.1007/978-3-642-31337-0_2, 2013. aDankers, R. and Feyen, L.: Climate change impact on flood hazard in Europe: An assessment based on high-resolution climate simulations, J. Geophys. Res., 113, D19105, https://doi.org/10.1029/2007JD009719, 2008. a, bDe Roo, A., Odijk, M., Schmuck, G., Koster, E., and Lucieer, A.: Assessing the effects of land use changes on floods in the meuse and oder catchment, Phys. Chem. Earth Pt. B, 26, 593–599, https://doi.org/10.1016/S1464-1909(01)00054-5, 2001. aDehn, M., Bürger, G., Buma, J., and Gasparetto, P.: Impact of climate change on slope stability using expanded downscaling, Eng. Geol., 55, 193–204, https://doi.org/10.1016/S0013-7952(99)00123-4, 2000. aDHI: MIKE FLOOD User Manual, Tech. rep., Danish Hydraulic Institute – Water and Environment, Hørsholm, Denmark, 2014. aDixon, K. W., Lanzante, J. R., Nath, M. J., Hayhoe, K., Stoner, A., Radhakrishnan, A., Balaji, V., and Gaitán, C. F.: Evaluating the stationarity assumption in statistically downscaled climate projections: is past performance an indicator of future results?, Clim. Change, 135, 395–408, https://doi.org/10.1007/s10584-016-1598-0, 2016. aDobler, C., Bürger, G., and Stötter, J.: Simulating future precipitation extremes in a complex Alpine catchment, Nat. Hazards Earth Syst. Sci., 13, 263–277, https://doi.org/10.5194/nhess-13-263-2013, 2013. a, bDuan, J. G., Bai, Y., Dominguez, F., Rivera, E., and Meixner, T.: Framework for incorporating climate change on flood magnitude and frequency analysis in the upper Santa Cruz River, J. Hydrol., 549, 194–207, https://doi.org/10.1016/j.jhydrol.2017.03.042, 2017. a, bEscuder-Bueno, I. and González-Pérez, J.: Metodología para la evaluación del riesgo hidrológico de presas y priorización de medidas correctoras, Colegio de Ingeniero de Caminos, Canales y Puertos, Madrid, Spain, 2014. aEscuder-Bueno, I., Castillo-Rodriguez, J., Perales-Momparler, S., and Morales-Torres, A.: SUFRI methodology for pluvial and river flooding risk assessment in urban areas to inform decision-making, SUFRI project, WP3, final report, Tech. rep., available at: http://www.edams.upv.es/docs/2011_July_SUFRI_WP3_Final Report.pdf (last access: 13 September 2018), 2011. aEscuder-Bueno, I., Castillo-Rodríguez, J. T., Zechner, S., Jöbstl, C., Perales-Momparler, S., and Petaccia, G.: A quantitative flood risk analysis methodology for urban areas with integration of social research data, Nat. Hazards Earth Syst. Sci., 12, 2843–2863, https://doi.org/10.5194/nhess-12-2843-2012, 2012. aEuropean Commission: An EU Strategy on adaptation to climate change, available at: http://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:52009DC0147&amp;amp;from=EN (last access: 13 September 2018), 2013. aEvans, S. G. and Delaney, K. B.: Catastrophic Mass Flows in the Mountain Glacial Environment, in: Snow and Ice-Related Hazards, Risks and Disasters, Elsevier, 563–606, https://doi.org/10.1016/B978-0-12-394849-6.00016-0, 2015. aFassnacht, S. R. and Records, R. M.: Large snowmelt versus rainfall events in the mountains: Big Mountain Snowmelt vs Rainfall Events, J. Geophys. Res.-Atmos., 120, 2375–2381, https://doi.org/10.1002/2014JD022753, 2015. aFEMA: Federal Guidelines for Dam Safety Risk Management, FEMA P-1025, Federal Emergency Management Agency, 2015. aFERC: Arch Dams, in: Engineering Guidelines for the Evaluation of Hydropower Projects, Federal Energy Regulatory Commission, Division of Dam Safety and Inspections, Washington, DC, 1999. aFERC: Engineering Guidelines for the Evaluation of Hydropower Projects, in: Dam Safety Performance Monitoring Program, Federal Energy Regulatory Commission, 2005. aFeyen, L., Barredo, J., and Dankers, R.: Implications of global warming and urban land use change on flooding in Europe, in: Water and Urban Development Paradigms: Towards an Integration of Engineering, Design and Management Approaches, CRC Press, Boca Raton, Florida, 217–225, 2008. aFischer, G., Tubiello, F. N., van Velthuizen, H., and Wiberg, D. A.: Climate change impacts on irrigation water requirements: Effects of mitigation, 1990–2080, Technol. Forecast. Soc., 74, 1083–1107, https://doi.org/10.1016/j.techfore.2006.05.021, 2007. aGarcía-Kabbabe, L., Chaparro-Carrasquel, L., Escuder-Bueno, I., and Serrano-Lombillo, A.: Metodología para estructurar modos de fallo en sistemas presa-embalse, Valladolid, Spain, 2010. aGilroy, K. L. and McCuen, R. H.: A nonstationary flood frequency analysis method to adjust for future climate change and urbanization, J. Hydrol., 414–415, 40–48, https://doi.org/10.1016/j.jhydrol.2011.10.009, 2012. aGirón, F.: The evacuation of floods during the operation of reservoir, in: 16th ICOLD Congress, International Commission on large dams (ICOLD), San Francisco, USA, 1988. aHall, J.: Quantified scenarios analysis of drivers and impacts of changing flood risk in England and Wales: 2030–2100, Global Environ. Change, 5, 51–65, https://doi.org/10.1016/j.hazards.2004.04.002, 2003. aHandmer, J., Honda, Y., Kundzewicz, Z., Arnell, N., Benito, G., Hatfield, J., Mohamed, I., Peduzzi, P., Wu, S., Sherstyukov, B., Takahashi, K., and Yan, Z.: Changes in impacts of climate extremes: human systems and ecosystems, in: Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation, edited by: Field, C., Barros, V., Stocker, T., Qin, D., Dokken, D., Ebi, K., Mastrandrea, M., Mach, K., Plattner, G.-K., Allen, S., Tignor, M., and Midgley, P., A Special Report of Working Groups I and II of the Intergovernmental Panel on Climate Change (IPCC), Cambridge University Press, Cambridge, UK, New York, NY, USA, 231–290, 2012. aHannaford, J. and Marsh, T. J.: High–flow and flood trends in a network of undisturbed catchments in the UK, Int. J. Climatol., 28, 1325–1338, https://doi.org/10.1002/joc.1643, 2008. aHilker, N., Badoux, A., and Hegg, C.: The Swiss flood and landslide damage database 1972–2007, Nat. Hazards Earth Syst. Sci., 9, 913–925, https://doi.org/10.5194/nhess-9-913-2009, 2009. aHirabayashi, Y., Mahendran, R., Koirala, S., Konoshima, L., Yamazaki, D., Watanabe, S., Kim, H., and Kanae, S.: Global flood risk under climate change, Nat. Clim. Change, 3, 816–821, https://doi.org/10.1038/nclimate1911, 2013. a, bHuggel, C., Caplan-Auerbach, J., and Wessels, R.: Recent Extreme Avalanches: Triggered by Climate Change?, Eos T. Am. Geophys. Un., 89, 469–470, https://doi.org/10.1029/2008EO470001, 2008. aHuss, M.: Present and future contribution of glacier storage change to runoff from macroscale drainage basins in Europe, Water Resour. Res., 47, W07511, https://doi.org/10.1029/2010WR010299, 2011. aHuss, M., Jouvet, G., Farinotti, D., and Bauder, A.: Future high-mountain hydrology: a new parameterization of glacier retreat, Hydrol. Earth Syst. Sci., 14, 815-829, https://doi.org/10.5194/hess-14-815-2010, 2010. aHutton, G., Haller, L., and Bartram, J.: Global cost-benefit analysis of water supply and sanitation interventions, J. Water Health, 5, 481–502, https://doi.org/10.2166/wh.2007.009, 2007. aICOLD: Bulletin on risk assessment in dam safety management, Tech. rep., International Commission on Large Dams, 2003. aICOLD: Risk assessment in dam safety management, A reconnaissance of benefits, methods and current applications, Bulletin 130, International Commission on Large Dams, 2005. aIPCC: Glossary of terms, in: Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation, edited by: Field, C., Barros, V., Stocker, T., Qin, D., Dokken, D., Ebi, K., Mastrandrea, M., Mach, K., Plattner, G.-K., Allen, S., Tignor, M., and Midgley, P., A Special Report of Working Groups I and II of the Intergovernmental Panel on Climate Change (IPCC), Cambridge University Press, Cambridge, UK, New York, NY, USA, 555–564, 2012a. aIPCC: Managing the risks of extreme events and disasters to advance climate change adaptation: special report of the Intergovernmental Panel on Climate Change, Cambridge Univ. Press, Cambridge, UK, New York, NY, USA, 1st publ. edn., 2012b. a, bIPCC: Climate Change 2013: The Physical Science Basis, Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, UK, New York, NY, USA, 2013. aIPCC: Climate Change 2014: Impacts, Adaptation, and Vulnerability, Part A: Global and Sectoral Aspects, Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge Univ. Press, Cambridge, UK, New York, NY, USA, 2014. a, b, cJames, L. and Lee, R.: Economics of water resources planning, McGraw-Hill series in water resources and environmental engineering, McGraw-Hill Book Co., 615 pp., 1970. aJärvelä, J.: Flow resistance of flexible and stiff vegetation: a flume study with natural plants, J. Hydrol., 269, 44–54, https://doi.org/10.1016/S0022-1694(02)00193-2, 2002. aKaplan, S.: The Words of Risk Analysis, Risk Anal., 17, 407–417, https://doi.org/10.1111/j.1539-6924.1997.tb00881.x, 1997. aKaplan, S. and Garrick, B. J.: On The Quantitative Definition of Risk, Risk Anal., 1, 11–27, https://doi.org/10.1111/j.1539-6924.1981.tb01350.x, 1981. aKay, A. L., Reynard, N. S., and Jones, R. G.: RCM rainfall for UK flood frequency estimation. I. Method and validation, J. Hydrol., 318, 151–162, https://doi.org/10.1016/j.jhydrol.2005.06.012, 2006. aKazem, M., McPhee, D., Torkaman Rashid, A., and Kazem, A.: Climate change and economic approaches into water allocation: optimization via direct benefits of water – the case study of Rudbar Lorestan hydropower dam (Iran), Sustain. Water Resour. Manage., 2, 461–472, https://doi.org/10.1007/s40899-016-0067-2, 2016. aKhaliq, M., Ouarda, T., Ondo, J.-C., Gachon, P., and Bobée, B.: Frequency analysis of a sequence of dependent and/or non-stationary hydro-meteorological observations: A review, J. Hydrol., 329, 534–552, https://doi.org/10.1016/j.jhydrol.2006.03.004, 2006. aKhazaei, M. R., Zahabiyoun, B., and Saghafian, B.: Assessment of climate change impact on floods using weather generator and continuous rainfall-runoff model, Int. J. Climatol., 32, 1997–2006, https://doi.org/10.1002/joc.2416, 2012. aKingston, D. G., Todd, M. C., Taylor, R. G., Thompson, J. R., and Arnell, N. W.: Uncertainty in the estimation of potential evapotranspiration under climate change, Geophys. Res. Lett., 36, L20403, https://doi.org/10.1029/2009GL040267, 2009. aKjeldsen, T., Macdonald, N., Lang, M., Mediero, L., Albuquerque, T., Bogdanowicz, E., Brázdil, R., Castellarin, A., David, V., Fleig, A., Gül, G., Kriauciuniene, J., Kohnová, S., Merz, B., Nicholson, O., Roald, L., Salinas, J., Sarauskiene, D., Šraj, M., Strupczewski, W., Szolgay, J., Toumazis, A., Vanneuville, W., Veijalainen, N., and Wilson, D.: Documentary evidence of past floods in Europe and their utility in flood frequency estimation, J. Hydrol., 517, 963–973, https://doi.org/10.1016/j.jhydrol.2014.06.038, 2014. aKlipsch, J. and Hurst, M.: HEC-ResSim Reservoir System Simulation User's Manual, Tech. rep., USACE, Institute for Water Resources, Hydrologic Engineering Center, Davis, CA, 2007. aKnutti, R., Furrer, R., Tebaldi, C., Cermak, J., and Meehl, G. A.: Challenges in Combining Projections from Multiple Climate Models, J. Climate, 23, 2739–2758, https://doi.org/10.1175/2009JCLI3361.1, 2010. aKondolf, G. M., Gao, Y., Annandale, G. W., Morris, G. L., Jiang, E., Zhang, J., Cao, Y., Carling, P., Fu, K., Guo, Q., Hotchkiss, R., Peteuil, C., Sumi, T., Wang, H.-W., Wang, Z., Wei, Z., Wu, B., Wu, C., and Yang, C. T.: Sustainable sediment management in reservoirs and regulated rivers: Experiences from five continents, Earth's Future, 2, 256–280, https://doi.org/10.1002/2013EF000184, 2014. aKundzewicz, Z., Mata, L., Arnell, N., Doll, P., Kabat, P., Jimenez, B., Miller, K., Oki, T., Sen, Z., and Shiklomanov, I.: Freshwater resources and their management, in: Climate Change 2007, Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Parry, M., Canziani, O., Palutikof, J., Van Der Linde, P., and Hanson, C., Cambridge, UK, Cambridge University Press edition, 173–210, 2007. aLanzante, J. R., Dixon, K. W., Nath, M. J., Whitlock, C. E., and Adams-Smith, D.: Some Pitfalls in Statistical Downscaling of Future Climate, B. Am. Meteorol. Soc., 99, 791–803, https://doi.org/10.1175/BAMS-D-17-0046.1, 2018. aLawrence, D., Paquet, E., Gailhard, J., and Fleig, A. K.: Stochastic semi-continuous simulation for extreme flood estimation in catchments with combined rainfall–snowmelt flood regimes, Nat. Hazards Earth Syst. Sci., 14, 1283–1298, https://doi.org/10.5194/nhess-14-1283-2014, 2014. aLewin, J., Ballard, G., and Bowles, D.: Spillway gate reliability in the context of overall dam failure risk, in: USSD Annual Lecture, Charleston, South Carolina, 2003. a, bLiu, Y.-J., Wang, T.-W., Cai, C.-F., Li, Z.-X., and Ch

    Portable Instrument for Hemoglobin Determination Using Room-Temperature Phosphorescent Carbon Dots

    Get PDF
    A portable reconfigurable platform for hemoglobin determination based on inner filter quenching of room-temperature phosphorescent carbon dots (CDs) in the presence of H2O2 is described. The electronic setup consists of a light-emitting diode (LED) as the carbon dot optical exciter and a photodiode as a light-to-current converter integrated in the same instrument. The reconfigurable feature provides adaptability to use the platform as an analytical probe for CDs coming from different batches with some variations in luminescence characteristics. The variables of the reaction were optimized, such as pH, concentration of reagents, and response time; as well as the variables of the portable device, such as LED voltage, photodiode sensitivity, and adjustment of the measuring range by a reconfigurable electronic system. The portable device allowed the determination of hemoglobin with good sensitivity, with a detection limit of 6.2 nM and range up to 125 nM.MINECO (Spain) CTQ2016-78754-C2-1-REuropean Union (EU

    A versatile wearable based on reconfigurable hardware for biomedical measurements

    Get PDF
    In this work a versatile hardware platform based on reconfigurable devices is presented. This platform it intended for the acquisition of multiple biosignals, only requiring a reconfiguration to switch applications. This prototype has been combined with graphene-based, flexible electrodes to cover the application to different biosignals presented in this paper, which are electrocardiogram, electrooculogram and electromyogram. The features of this system provide to the user and to medical personnel a complete set of diagnosis tools, available both at home and hospitals, to be used as a triage tool and for remote patient monitoring. Additionally, an Android application has been developed for signal processing and data presentation to the user. The results obtained demonstrate the wide range of possibilities in portable/wearable applications of the combination of reconfigurable devices and flexible electronics, especially for the remote monitoring of patients using multiple biosignals of interest. The versatility of this device makes it a complete set of monitoring tools integrated in a reduced size device
    • …
    corecore